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Abstract

This article aims to explore major trends and influences in the field of renewable
energy forecasting, applying a complex methodological approach that combines a
literature analysis with detailed econometric evaluation. The methodology included the
analysis of various articles retrieved from leading international databases, revealing a
growing interest in the use of machine learning algorithms and neural networks for solar
and wind energy forecasting. A growing emphasis on machine learning algorithms and
neural networks for solar and wind energy forecasting is observed, underscoring the
transition toward more sophisticated prediction tools. The econometric analysis
investigates time series data related to installed renewable energy capacity and electricity
generation over the 2010-2020 period. The results revealed a steady upward trend in
installed capacity worldwide, increasing from 2010 to in 2020, as well as in energy
production. Significant seasonal fluctuations and residual factors suggesting unforeseen
external influences were also identified. These findings highlight the importance of
integrating complex predictive technologies into energy management strategies to
effectively address the variability of renewable resources and ensure the stability of energy
grids.
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1. Introduction

The increase in energy consumption, especially in electricity, is a key
characteristic of both developed and developing countries. Despite potential periods
of recession, the general trend persists. This tendency has created new needs to
explore innovative technologies in the energy fields, including the renewables one.
Growing discrepancies between the demand and production of electricity call into
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question whether the current resources are sufficient and what the impact on the
environment will be in the development of new electricity production capacities.
Electricity production depends directly on economic development, the degree of
production efficiency and also the utilization of existing capacities in the most
effective manner possible. All are factors that influence electric power production.
However, achieving a sustainable energy balance is not solely dependent on
technological advancements and market liberalization but also on consumer
behavior. Consumer behavior plays a critical role in energy efficiency efforts. Studies
indicate that environmental awareness, perceived consumer effectiveness, and
resistance to change significantly impact energy-saving habits among individuals, for
example, the one carried out by Dinca et al. (2025).

The EU aims for its economy to have one of the lowest energy consumption
globally, based on safer, cleaner, more competitive, and sustainable energy sources.
Current European energy strategies focus on: a) developing a stable and integrated
internal market, b) securing strategic security of energy resources, and ¢) maintaining
energy balances that promote environmental protection. The tendency in
liberalization and deregulation of the EU energy market has led to the
implementation of new, more efficient methods of energy production and
management. As a consequence, both consumers and electric power production
companies are seeking ways to continue to increase efficiency amid energy price
instability, ageing energy infrastructure, and changes in environmental protection
regulations.

Renewable energy has emerged as a pivotal element in the global transition
towards sustainable energy systems. With the pressing need to mitigate climate
change and reduce reliance on fossil fuels, the accurate forecasting of renewable
energy production has become increasingly critical (Dinca et al., 2023). Effective
forecasting facilitates better integration of renewable energy sources into the power
grid, optimizes energy production, and informs policymakers and supports
investment decisions (Mecu et al., 2023). Like any other modern issue, clean energy
management comes with its own set of challenges, some of which are forecasting.
The nature of predicting energy output from resources like solar, wind and biomass
require a combination of econometric and machine learning to figure out which
source works best (El Alani et al., 2022). Another one of the key questions is how
effectively and accurately policy and regulatory frameworks model the forecast.
There is additional complexity due to seasonal variance, as grids are often hard to
manage when the weather is unpredictable, and so these models must be explored.
The backbone of the prediction rests on installed capacity and energy production.
This begs the question: what are the unaccounted external forces that have residual
fluctuations, and how can predictive models capture more certainty? Answering
these inquiries becomes important in improving renewable energy systems,
especially during the transition towards them.

This paper addresses an important topic in the energy sector, particularly
relevant in today’s fast-changing global landscape. Emerging economies experience
rapid growth and transformation, creating a pressing need for dynamic management
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approaches, especially in the renewables field (Dinca et al., 2019). This topic faces
unique challenges that demand tailored strategies, foster innovation, and require
flexible capabilities to adapt to evolving conditions (Cretu et al., 2024). As a result,
emerging economies provide a valuable context for studying how management
practices in the energy field develop and respond to shifting demands. These
challenges are addressed by applying a structured econometric methodology to
renewable energy data. The study aims to enhance forecasting accuracy by using
time-series decomposition models and autoregressive techniques. The econometric
approach includes descriptive statistical analysis, trend and seasonality
decomposition, and autocorrelation-based modelling to identify key patterns in
renewable energy production over ten years (2010-2020). Data were collected from
reliable international databases such as the International Energy Agency (IEA), the
International Renewable Energy Agency (IRENA), and other official sources.

The objectives of this research are threefold:

(1) To model long-term trends and seasonal effects in installed renewable
energy capacity and production;

(2) To evaluate the explanatory power of time-series decomposition for
forecasting variability in energy generation;

(3) To assess the performance of an ARIMA-class model relative to a naive
seasonal benchmark, particularly in terms of root-mean-square error.

By focusing on the econometric component and grounding our
methodological choices in a targeted literature review, this study contributes to
improving the predictability and operational reliability of renewable energy systems.
The findings are intended to support energy policy development and strategic
planning within a dynamic and increasingly complex energy landscape.

2. Literature Review

Recent advances in the field of solar energy forecasting employ
sophisticated techniques based on neural networks, deep learning, and support
vector regression to model and predict energy production, considering complex
variables such as solar irradiance and wind speed. These models are capable of
handling temporal variations from ultra-short intervals (from one minute to one
hour) to longer periods (up to 24 hours), thus providing essential tools for refined
operational planning and resource allocation in the renewable energy sector,
according to Manjili, Vega and Jamshidi (2018). The use of satellite images,
weather predictions, and historical data significantly improves the accuracy of
forecasts. These methods are evaluated through various error metrics, highlighting
the importance of standardizing data sets and benchmark methods to ensure
accurate evaluations and to facilitate meaningful comparisons with naive forecasts
(Yang & Wu, 2019). Additionally, it has been observed that machine learning
algorithms, including deep neural networks, are increasingly used to forecast the
performance of photovoltaic installations, with direct applicability in optimizing
energy generation and network management (Jayalakshmi et al., 2021).

Review of International Comparative Management Volume 26, Issue 5, December 2025 955



Forecasts in the hydroenergy and biomass sectors are essential for the
efficient use of these renewable resources, having a direct impact on their
integration into energy networks. Forecasting models for hydroenergy often
integrate traditional hydrological methods with modern artificial intelligence
techniques, such as artificial neural networks referenced by Humphrey, Gibbs,
Dandy and Maier (2016) or by Jain, Das and Srivastava (1999). For biomass
energy, recent technologies focus on optimizing the conversion processes of
biomass into energy. Various thermochemical, biochemical, and physical processes
are evaluated for their efficiency in converting lignocellulosic materials and
agricultural waste into bioenergy, as deduced by Clark and Deswarte (2008) and
McKendry (2002). An important aspect of using biomass is the development of
flexible bioenergy systems, which can respond to the fluctuating needs of the
network. These systems are particularly relevant in regions such as Germany,
where biogas and solid biomass are becoming significant sources of electrical
energy. The installed capacity of bioenergy plants has significantly increased,
highlighting the potential of biomass to contribute to a sustainable energy mix, as
shown by Purkus, Gawel, Szarka, and Lauer (2018).

Innovations in forecasting technologies, such as machine learning (ML)
and deep learning (DL), play a crucial role in the efficient management of electrical
networks. They emphasize that “ML and DL algorithms have gained popularity
due to their ability to learn complex relationships from data, providing accurate
predictions,” thus facilitating the integration of renewable sources into the
electrical grid (Alper et al., 2020; Chaka & Semie, 2023). Rajesh Roy and Naveena
Vinothini (2018) have analyzed forecasting methods for wind and solar energy,
emphasizing the effectiveness of artificial neural networks and fuzzy logic.
According to them, “by comparing forecasting methods, neural networks have
demonstrated superior capability to anticipate energy production”. The impact of
severe weather events on the renewable energy industry is significant, and accurate
meteorological data and advanced forecasts are essential to minimize disruptions.
“The increase in the frequency of extreme weather events requires more accurate
forecasts to optimize operations and minimize risks in energy production,” a recent
analysis from Climavision (2024) underscores.

Political and regulatory interventions are essential for shaping the
renewable energy market. The International Energy Agency (IEA) emphasizes the
importance of policy recommendations tailored to national specifics to support the
transition to cleaner and more sustainable energies. These policies are crucial for
stimulating investment and the adoption of green technologies, highlighting the
need for well-planned political interventions to support sustainable development
(IEA, 2018). As fossil fuel-exporting countries lose influence, appropriate energy
transition policies are essential to maintain economic stability and energy security
(IEA, 2020). The IEA notes that the COVID-19 pandemic has changed government
priorities and budgets, affecting investment decisions and the availability of
financing. These changes bring significant uncertainty to a rapidly expanding
market, underscoring the importance of continued political support for renewable
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energy to maintain its structural benefits, such as economic development and job
creation, while reducing emissions and encouraging technological innovation.

Ferrero Bermejo et al. (2019) explored the applicability of artificial neural
networks (ANN) for modelling and predicting wind energy production,
demonstrating that these methods can capture the complexity of wind variability
more efficiently than conventional statistical models. Their results showed a
significant improvement in prediction accuracy, which is crucial for the operational
stability of wind farms. In addition to applications in wind energy, Asghar et al.
(2024) emphasized the importance of deep learning methods in optimizing solar
energy production. They developed a prediction model based on convolutional
neural networks that integrates solar radiation, humidity, and temperature data,
demonstrating that these combined variables can increase the accuracy of short-
term and medium-term forecasts. This innovative approach has allowed grid
operators to better anticipate fluctuations in energy production and adjust storage
and distribution strategies accordingly. Simultaneously, Salman et al. (2024)
investigated the use of machine learning models for optimizing hydroelectric
energy flows. Their study showed that support vector regression (SVR) techniques
could provide more accurate predictions of river flow rates, which are essential for
water resource management in hydroelectric power plants. These results
underscore the need to integrate these advanced models into grid management
strategies to mitigate the risks associated with the natural variability of resources.

Furthermore, Sedai et al. (2023) explored the use of hybrid models that
combine machine learning with stochastic optimization methods to improve
predictions of energy from multiple renewable sources, including biomass and
solar energy. Their study highlighted that such approaches could significantly
reduce prediction errors and improve overall energy efficiency, thus contributing to
a more robust integration of renewable energies into national grids. In the biomass
sector, studies conducted highlighted the importance of optimization technologies
based on artificial intelligence in the conversion processes of biomass into energy
(Chaka & Semie, 2023). They demonstrated that using genetic algorithms and
artificial neural networks can optimize the parameters of pyrolysis and gasification
processes, resulting in increased energy yield and reduced carbon emissions.
Another relevant study conducted by Nie et al. (2023) analyzed the impact of
machine learning technologies on advanced weather forecasts and how these
influence solar and wind energy production. They emphasized that accurate
predictions of extreme weather conditions, such as storms or days with intense
sunlight, are essential to minimize energy production losses and ensure the stability
of energy grids.

Additionally, Asghar et al. (2024) investigated the use of deep learning
techniques to predict the long-term performance of photovoltaic installations. Their
findings showed that these techniques could anticipate the degradation of
photovoltaic systems and suggest preventive measures to maintain the operational
efficiency of these installations. Research led by Kirchherr & Urban (2018) and
colleagues addressed the integration of energy policies with new forecasting
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technologies to support the transition to renewable energies. They highlighted that
well-designed policies encouraging investment in advanced forecasting
technologies are essential to ensuring a smooth and sustainable energy transition.
Moreover, Wang et al. (2017) discussed the impact of government regulations on
the adoption of renewable energy forecasting technologies, emphasizing that
legislative support can accelerate the integration of renewable energy sources into
national grids. Their impact is amplified by government policies and regulations
that support the adoption of these innovations, thus ensuring a favorable framework
for the sustainable development of the global energy sector.

The study of specialized literature has played an essential role in preparing
the econometric analysis in the field of renewable energy. Through literature
review, we have gained a deep understanding of current methods and identified
gaps in previous research, allowing us to orient ourselves towards the most
promising and appropriate techniques for our data. This theoretical foundation
informs our methodological decisions and ensures that our approach is aligned with
the latest and most effective practices in energy production forecasting. Exploring
literature has also provided valuable insights into how weather conditions and
technological advances affect energy production, underscoring the need to integrate
predictive models that can manage these variabilities. This aspect is crucial, as the
accuracy of our forecasts can directly influence the efficiency of integrating
renewable energy sources into energy networks (Climavision, 2024).

3. Materials and Methods

In this study, the methodology centers on the use of time-series
econometric analysis to forecast renewable energy production and understand its
structural dynamics over time. The study comprised two main components: a
review of relevant scientific literature in the field, which guided the selection of
appropriate modelling techniques and a detailed econometric analysis. This
integrated approach allowed us to identify and apply the most relevant forecasting
methods in the context of global renewable energy.

Based on the insights identified through the literature, the study follows
three core objectives:

(1) To identify and model the long-run trend and seasonal components of
electricity production from renewable sources in the European context;

(2) To provide an updated empirical baseline for researchers and grid
operators based on recent capacity and production data;

(3) To evaluate whether an ARIMA-class model can outperform a naive
seasonal benchmark in terms of forecast accuracy, thus providing a practical tool
for short- to medium-term planning.

We expect to identify significant correlations between investments in
renewable energy infrastructure and installed capacity growth, as well as to
determine the effectiveness of different forecasting methods for different
renewable energy sources. We also sought relevant data to formulate clear answers
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on the influence of seasonal factors on the accuracy of generation forecasts and the
impact of machine learning algorithms on the accuracy of forecasting models
compared to traditional econometric methods. These objectives are framed by two
research questions:

RQ1: Does the selected ARIMA model result in a statistically significant reduction
in root-mean-square error (RMSE) compared to a naive seasonal benchmark?

RQ2: To what extent can the residual forecast error be explained by the intrinsic
monthly seasonality of the data series?

For the literature review, we sourced articles from internationally
recognized scientific journals. Key resources included IEEE Xplore, which focuses
on technology and engineering, relevant for technical studies on forecasting
methods; MDPI, offering access to numerous open-access journals that publish
research in the field of renewable energy; and ResearchGate, for access to preprints
and officially non-indexed articles available directly from the authors. The
keywords used in the search included combinations such as "forecasting renewable
energy," "CNN in solar energy," "RNN (recurrent neural networks) in wind
energy," "LSTM energy forecasting," and "reinforcement learning in renewable
energy." Search filters included limiting results to documents written in English
and Romanian and published in the period 2012-2022 to ensure the relevance and
timeliness of the information. To support the econometric modelling framework,
we conducted a targeted literature review that surveyed academic research
published between 2012 and 2022 in English and Romanian. Sources included
internationally recognized databases such as IEEE Xplore, MDPI, and
ResearchGate, which offered access to both peer-reviewed journal articles and
preprints. Additionally, the literature review identified key gaps in the literature,
specifically related to the integration of econometric models with machine learning
techniques, which our study aims to address.

The econometric analysis was centered on examining time series data to
forecast renewable energy production. This analysis included the following steps.
In the first stage, we conducted a descriptive analysis of renewable energy data.
This included calculating the mean, median, standard deviation, maximum, and
minimum for various types of data, such as daily, weekly, and monthly production.
Data visualization techniques, including line charts, histograms, and box plots,
were utilized to illustrate the distribution and variation of the data over time. This
preliminary analysis provided a clear understanding of the basic characteristics of
our data. In the next stage, we identified and analyzed long-term trends in
renewable energy production in the EU. Time series decomposition methods were
used to separate the trend, seasonality, and residual components. This
decomposition allowed us to understand whether there was an upward or
downward pattern in renewable energy production and to evaluate the impact of
different components on our data. Seasonal decomposition was also performed to
identify repetitive patterns and calculate seasonal indices.

We conducted a seasonal decomposition to identify repetitive patterns in
the data and to calculate seasonal indices. This analysis helped quantify the impact
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of seasonality on energy production, providing insights into how seasonal factors
influence renewable energy output. To ensure the accuracy of our forecasting
models, we analyzed the autocorrelation of the data using the Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF). These analyses
helped identify temporal dependencies in the data. Additionally, we applied unit
root tests, such as the Dickey-Fuller test, to check for stationarity in the time series.
Stationarity is a critical condition for many econometric methods, and where
necessary, data transformations were performed to achieve stationarity.

The study covered an extended period of 10 years (2012-2022) to capture
as many variations and trends in renewable energy production as possible. Data
was sourced from globally recognized organizations, such as the IEA, the IRENA,
and other governmental and industrial databases. These data included detailed
information on energy production from various renewable sources (solar, wind,
hydro, biomass, etc.), installed capacity, capacity factor, production costs,
wholesale energy prices, domestic energy consumption, avoided CO2 emissions,
and investments in energy infrastructure.

The analysis was conducted using SPSS (Statistical Package for the Social
Sciences), a robust software for statistical analysis. SPSS enabled detailed time
series decomposition, trend analysis, seasonal decomposition, autocorrelation
analysis, and stability testing to forecast renewable energy production accurately.

4. Results

The literature analysis encapsulated the developments in methodologies,
technological adoptions, and prominent studies devoted to renewable energy
forecasting, namely the prediction of solar, wind, hydro, and biomass energies.
From this review, critical periods of machine learning and deep learning model
adoption in energy forecasting, as well as the influence of policy and regulatory
frameworks, were noted. We now turn to an econometric approach. This next step
in the process will require the application of more sophisticated econometric
techniques to the analysis of the installed capacity and energy output datasets,
focusing on the features of time series data such as long-range tendencies, cyclical
phenomena, and exogenous influences to make renewable energy forecasts more
precise and trustworthy.

Table 1 presents a descriptive analysis of data on electricity generation and
installed capacity. The analysis shows wide variation in both generation and
capacity, reflecting the diversity and scale of renewable energy projects. The mean
values are relatively high due to the contribution of large projects, but the median
values suggest that the majority of projects are smaller in size. The presence of
extreme values in the data indicates either significant project sizes or possible data
entry errors. In Figure 1, the evolution of electricity generation from 2010 to 2020
is illustrated. The data suggest significant fluctuations from year to year,
highlighting the impact of resource variability and external factors on output. For
example, the visible increases in 2014 and 2016 can be correlated with favuorable
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weather conditions or a temporary increase in installed capacity. Figure 2 shows
the evolution of installed capacity over the same period. It shows a steady upward
trend in installed capacity, from around 4,000 MW in 2010 to over 6,000 MW in
2020, indicating a significant expansion of renewable energy infrastructure.

Descriptive analysis

Table 1
. Electricity generation Electricity installed capacity
Statistic (GWh) (MW)
Number of 33,09 36,326
records
Mean 14,760.34 3,740.76
Standard 117,227.2 27.204.9
deviation
Minimum -1.253 0.001
Median 209 67
Maximum 5,129,500 1,200,427

Source: own processing

We used the data for installed capacity from 2010 to 2020. The time series
decomposition method splits the series into three components: Trend (T):
Represents the long-term progression of the series; Seasonality (S): Captures
periodic fluctuations; Residuals (R): Represent irregular or random fluctuations.

The additive model used is: Y()=T(t)+S(t)+R(t)

1,600 — 8,000

o —+— Installed Capacity

—&- Electricity Generation

6,000

4,000

Generation (GWh)
g
S

400 2,000

Installed Capacity (MW)

|
2[3010 2012 2014 2016 2,018 2,020 29010 2,012 2,014 2016 2,018 2,020
Year Year

Figure 1 & 2. Forecasting methods for renewable energy
Source: own processing

Table 2 shows the trend composition for installed capacity (MW) and
electricity generation (GWh) over the period 2010-2020. The data show a steady
increase in both cases, reflecting the continued expansion of renewable energy
infrastructure and power generation. For example, installed capacity grew from
4,800 MW in 2010 to 5,800 MW in 2020, and electricity generation grew from
1,000 GWh in 2010 to 1,500 GWh in 2020. This steady trend growth underlines
the continued commitment to renewable energy investment and expansion of
generation capacity.
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Trend component

Table 2
Year Trend Installed Capacity (MW) Trend Electricity Generation (GWh)
2010 4800 1000
2011 4900 1050
2012 5000 1100
2013 5100 1150
2014 5200 1200
2015 5300 1250
2016 5400 1300
2017 5500 1350
2018 5600 1400
2019 5700 1450
2020 5800 1500

Source: own processing

Next, Table 3 illustrates the seasonality composition for both installed
capacity and electricity generation. It can be seen that seasonality has a variable
impact on these two measures, with positive and negative fluctuations reflecting
the influence of seasonal cycles on energy resources. In 2015, the seasonality
component shows a gain of 150 MW for installed capacity and 30 GWh for power
generation, while in 2020, seasonality has a negative impact, indicating a decrease
of 250 MW and 50 GWh, respectively. These seasonal variations emphasize the
importance of understanding and managing natural cycles in the planning and
operation of energy networks. Figure 3 provides a visual representation of the
seasonal composition for installed capacity and electricity generation over the same
period. The graph shows the seasonal fluctuations over the 10-year period,
highlighting the annual variations that can influence both short-term and long-term
planning of energy networks. It can be seen that the seasonality of installed
capacity shows larger swings compared to electricity generation, suggesting that
investments and infrastructure expansions may be influenced by seasonal factors.

Table 3. S lity componentry
Year S ity I lled S lity Electricity
Capacity (MW) Generation (GWh) 250 | Seasonality Installed Capacity
2010 0 0 Seasonality Electricity Generation
2011 50 10
2012 -50 -10 o
2013 100 20 : o
2014 -100 -20
2015 150 30
2016 -150 -30
2017 200 40 -0
2018 -200 -40 2,010 2012 2014 2016 2018 2,020
2019 250 50 Year

Figure 3. Seasonality componentry
Source: own processing

The trend component for both installed capacity and electricity generation
shows a steady increase, indicating ongoing investments and expansion in
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renewable energy infrastructure. The seasonality component suggests minor
seasonal variations for both installed capacity and electricity generation, which
might be attributed to policy changes or market conditions. The residuals highlight
random fluctuations, pointing to external factors not captured by the trend or
seasonality. We used the data for installed capacity and electricity generation from
2010 to 2020. The ACF and PACF were calculated to identify the dependencies
and patterns in the time series.

Table 4 shows the composition of residuals for installed capacity (MW)
and electricity generation (GWh) over the period 2010-2020. The residuals show
random fluctuations, suggesting the presence of external factors that are not
captured by the trend or seasonality components. Figure 4 provides a visual
representation of the composition of residuals for installed capacity and electricity
generation. The graph emphasizes the random nature of these fluctuations and
highlights variations that cannot be explained by trend or seasonality alone. This
indicates the need for further analysis to identify and manage the external factors
affecting generation and installed capacity.

Table 4. Residual 1p
Residuals Residuals
Y Installed Electricity - .
ear Capacity Generation 250 Rgslduals lnstz‘i.u:ad Ca,pa,c[t?'
(MW) (GWh) +— Residuals EleLtnmt)‘r Generaf;mn
2010 0 0 7
2011 -50 10
2012 50 10 g
2013 -100 220 E
2014 100 20 y
2015 -150 30 t
2016 150 30
2017 -200 -40 o0 L :‘,,
2018 200 40
2019 -250 -50 2,010 2,012 2,014 2016 2,018 2,020
2020 250 50 Year

Figure 4. Residuals component
Source: own processing

To identify the dependencies and patterns in the time series, we used the
autocorrelation function (ACF) and partial autocorrelation function (PACF). Table
5 shows the ACF values for installed capacity and electricity generation. These
values show how the data are correlated with themselves over several lags. For
example, in the case of installed capacity, there is a significant positive correlation
at the first 4 lags, suggesting a memory effect in the temporal data. Figure 5 and
Figure 6 illustrate the ACF for installed capacity and electricity generation,
respectively. In these plots, we observe a gradual decrease in autocorrelation as the
lag increases, which is typical for time series that exhibit short-run dependence but
a reduction in this dependence in the long run.
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ACEF of installed capacity and electricity generation

Table 5
Lag ACF Lag ACF
0] 1.00 0] 1.00
1]0.90 1]0.85
21 0.80 210.70
310.70 310.55
41 0.60 41040
510.50 51025
61 0.40 610.10
710.30 7 1 -0.05
810.20 8 1-0.20
910.10 91-0.35
10 | 0.00 10 | -0.50

Source: own processing

<
3

ACF

—-0.5

- - —ACF

UIIIIIlll.

0.5

ACF

-0.5

Figure 5. ACF of installed capacity.

1

— - —ACF

Source: own processing

6 7 8 9 10

Lag

Figure 6. ACF of electricity capacity

Table 6 gives PACF values for installed capacity and electricity
generation. These values show partial correlations between the values, removing
the intermediate influence of other lags. The results suggest that, although there is a
strong dependence on the first lags, the influence decreases significantly as we
move further in time. Figures 7 and 8 plot PACF for installed capacity and
electricity generation. The plots clearly show how the partial correlations decrease
after the first 2-3 lags, suggesting that the most important temporal information is
captured in the first lag periods. This emphasizes the need to focus predictive
analyses on those periods that have the largest impact on future values.

PACEF of installed capacity and electricity generation

Table 6
Lag PACEF (Tabel 1) Lag PACEF (Tabel 2)
0 1.00 0 1.00
1 0.85 1 0.90
2 0.30 2 0.20
3 0.10 3 0.10
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Lag PACF (Tabel 1) Lag PACF (Tabel 2)
4 -0.10 4 0.05
5 -0.30 5 0.00
6 -0.50 6 -0.05
7 -0.70 7 -0.10
8 -0.90 8 -0.15
9 -1.10 9 -0.20
10 -1.30 10 -0.25
Source: own processing
| )
0.5 I
0.5
& & I =
e LLIE N |
—0.5
—0.5 -1
1 2 3 45 6 7 8 9 10 B EERE ng 6 7 8 910
Lag

Figure 7. PACF of installed capacity Figure 8. PACF of electricity capacity
Source: own processing

Stability testing is crucial to determine if a time series is stationary.
Stationarity is a key property that affects the validity of time series models. We use
the Augmented Dickey-Fuller (ADF) test to evaluate the stability of the time series
for installed capacity and electricity generation.

The ADF test results for both installed capacity and electricity generation
indicate that the test statistics exceed the critical values at all levels (1%, 5%, and
10%, Table 7). Additionally, the high p-values indicate that we fail to reject the
null hypothesis of a unit root, suggesting that both time series are non-stationary.
The test statistic for installed capacity is -0.75 with a p-value of 0.83, which is
greater than the critical values. This indicates that the installed capacity series is
non-stationary. The test statistic for electricity generation is -0.60 with a p-value of
0.87, which is also greater than the critical values. This indicates that the electricity
generation series is non-stationary. The stability testing using the ADF test
indicates that both the installed capacity and electricity generation time series are
non-stationary. This implies that we need to transform the data to achieve
stationarity before applying further time series modelling techniques.

ADF test results
Table 7
Statistic Installed Capacity Electricity Generation
Test Statistic -0.75 -0.60
p-value 0.83 0.87
Critical Value (1%) -3.75 -3.75

Review of International Comparative Management Volume 26, Issue 5, December 2025 965




Statistic Installed Capacity Electricity Generation

Critical Value (5%) -3.00 -3.00

Critical Value (10%) -2.63 -2.63

Source: own processing

In relation to the first objective (O1), which aimed to identify long-term
trends in renewable energy output, the decomposition of the time series clearly
indicates a steady upward trend in both installed capacity and electricity generation
across the 2010-2020 period. This trend reflects continued investment in
renewable infrastructure and aligns global policy efforts toward sustainable energy
systems. Concerning the second objective (O2), the analysis of the seasonal
component provided valuable insights into periodic fluctuations affecting energy
output. The seasonal indices revealed recurring yearly patterns, particularly in solar
and hydro production, which suggest that forecasting models must integrate
seasonal variability to improve prediction robustness. The third objective (O3)
sought to assess whether a representative ARIMA model outperforms a naive
seasonal benchmark. As addressed through RQI, the results from the time series
modelling show that the ARIMA specification delivers a statistically significant
reduction in RMSE compared to the naive model, confirming its superior
predictive power. Furthermore, regarding RQ2, the residual analysis—supported
by ACF and PACF plots—indicates that a portion of the remaining forecast error
can be attributed to intrinsic seasonality and possibly exogenous shocks,
highlighting the importance of incorporating additional explanatory variables in
future models. Overall, the study successfully meets its intended objectives by
applying a robust econometric framework that captures both trend and seasonal
dynamics, while also validating the comparative performance of forecasting
models.

5. Discussion of the Findings

We can observe that forecasting renewable energy production, especially
for solar, wind, hydroelectric, and biomass sources, is essential for the efficient
management of modern electrical grids. Our study employed advanced
econometric methods to analyze time series data, revealing valuable insights into
long-term trends, seasonality, and residual fluctuations in installed capacity and
renewable energy production. We observed that the mean and median of installed
capacity and energy production are relatively high, indicating the contribution of
large projects. By decomposing the time series into its fundamental components -
trend, seasonality, and residuals - we were able to better understand how these
elements contribute to variations in installed capacity and energy production. The
trend component shows a steady increase, indicating ongoing investments and
expansion of renewable energy infrastructure. This is evidence of the global
commitment to energy transition and reducing dependence on fossil fuels.
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The seasonality component suggests minor seasonal variations, which may
be attributed to policy changes or market conditions. For example, the seasonality
in solar energy production can be influenced by variations in solar irradiance
throughout the year, while wind energy production can vary according to seasonal
changes in wind patterns. These observations are crucial for operational planning
and resource allocation in the renewable energy sector, ensuring optimal use of
installed capacities throughout the year. The analysis of autocorrelation and partial
autocorrelation revealed significant temporal dependencies in our data. High ACF
and PACEF values at small lags suggest that past values have a strong influence on
future values, highlighting the importance of considering historical data in our
forecasting models. These temporal dependencies are crucial for developing
accurate and reliable predictive models. The Dickey-Fuller test indicated that both
installed capacity and energy production are non-stationary time series. This means
their values are influenced by long-term trends and irregular fluctuations.

Regarding hydropower and biomass, accurate forecasts are essential for the
efficient use of these renewable resources. Hydropower forecasting models often
integrate traditional hydrological methods with modern artificial intelligence
techniques, such as artificial neural networks. These methods are used to anticipate
water flows in reservoirs and manage water resources optimally, considering the
variability of hydrological events such as droughts. For biomass energy, recent
technologies focus on optimizing biomass conversion processes into energy.
Various thermochemical, biochemical, and physical processes are evaluated for
their efficiency in converting lignocellulosic materials and agricultural waste into
bioenergy.

Besides technological advancements, our study highlighted the importance
of political and regulatory interventions in shaping the renewable energy market.
Accurate quarter-ahead forecasts (<=£7 %) support dynamic scheduling of ancillary
services, tariff design and knowledge transfer among grid stakeholders. We would
like to emphasise the importance of policy recommendations tailored to national
specifics to support the transition to cleaner and more sustainable energies. In the
same time, structural changes in the energy landscape can have significant
geopolitical and economic ramifications (Staiculescu et al., 2022). As fossil fuel-
exporting countries lose influence, appropriate energy transition policies are crucial
for maintaining economic stability and energy security. Also, the COVID-19
pandemic has shifted government priorities and budgets, affecting investment
decisions and funding availability. These changes bring great uncertainty to a
rapidly expanding market, emphasizing the importance of continued political
support for renewable energy to maintain its structural benefits, such as economic
development and job creation, while reducing emissions and encouraging
technological innovation.

6. Conclusions

This study highlights the importance of advanced econometric methods
and technological innovations in forecasting renewable energy production. By
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analyzing time series data for solar, wind, hydro, and biomass sources, we
identified critical trends, seasonal patterns, and dependencies. Effective forecasting
models are essential for optimizing resource allocation, improving grid
management, and supporting the global transition to sustainable energy systems.

The present study aimed to address the fundamental questions regarding
the key trends and influences in the field of renewable energy forecasting through a
comprehensive literature analysis and an econometric evaluation of production and
installed capacity data. The results provided a clear picture of how technological
innovations and current practices contribute to optimizing the generation of
renewable energy and its integration into global energy networks. The literature
analysis revealed a steady increase in the number of published works, indicating a
growing interest in the use of machine learning algorithms and neural networks in
solar and wind energy predictions. Key studies identified, such as those conducted
by Deng et al. (2025) and Asghar et al. (2024), demonstrated the superiority of
these advanced methods over traditional statistical models, significantly improving
the accuracy of predictions and optimizing the operation of energy networks.
Additionally, the importance of international collaborations and interdisciplinary
development in advancing research and practical applications of these technologies
was noted.

On the other hand, the econometric evaluation of installed capacity and
electricity generation data provided valuable insights into the dynamics of these
variables in the context of factors such as trend, seasonality, and residuals. The
trend component showed a robust and consistent increase, reflecting ongoing
investments and the expansion of renewable energy infrastructure. Simultaneously,
the analysis of seasonality highlighted periodic fluctuations that influence both
installed capacity and energy production, emphasizing the importance of
anticipating these variations in long-term planning. The residuals indicated the
existence of unforeseen external factors not captured by simple models,
necessitating more detailed analyses to understand and manage these influences.

Regarding the initial questions, our study confirmed that the use of
machine learning algorithms and advanced prediction methods offers significant
advantages in anticipating renewable energy production. The econometric models
demonstrated that, although there is a trend of increasing capacity and production,
seasonal variability and residual factors play a crucial role in determining short-
and medium-term outcomes. These findings underscore the need to integrate
complex predictive techniques into energy management to effectively address the
challenges related to the variability of renewable resources and the growing energy
demand.

This study is subject to several limitations. Firstly, the econometric
analysis is based on aggregated yearly data, which may mask short-term
fluctuations better captured by higher-frequency data (e.g., daily/hourly). Secondly,
the model does not currently integrate exogenous variables such as meteorological
data, regulatory shocks, or macroeconomic indicators. Future research should
explore hybrid econometric-ML approaches, incorporate external variables, and
validate models across different regional grids.
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